Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available April 1, 2026
-
Summary Communities of arbuscular mycorrhizal (AM) fungi assemble passively over time via biotic and abiotic mechanisms. In degraded soils, AM fungal communities can assemble actively when humans manage mycorrhizas for ecosystem restoration.We investigated mechanisms of urban AM fungal community assembly in a 2‐yr green roof experiment. We compared AM fungal communities in inoculated and uninoculated trays to samples from two potential sources: the inoculum and air.Active inoculation stimulated more distinct and diverse AM fungal communities, an effect that intensified over time. In the treatment trays, 45% of AM fungal taxa were detected in the inoculum, 2% were detected in aerial samples, 23% were detected in both inoculum and air, and 30% were not detected in either source.Passive dispersal of AM fungi likely resulted in the successful establishment of a small number of species, but active inoculation with native AM fungal species resulted in an immediate shift to a diverse and unique fungal community. When urban soils are constructed or modified by human activity, this is an opportunity for intervention with AM fungi that will persist and add diversity to that system.more » « less
-
Fungi play key roles in ecosystems and human societies as decomposers, nutrient cyclers, mutualists, and pathogens. Estimates suggest that roughly 3–13 million fungal species exist worldwide, yet considerable knowledge gaps exist regarding the mechanisms and consequences, both ecological and social, of fungal dispersal from local to global scales. In this review, we summarize concepts underlying fungal dispersal, review recent research, and explore how fungi possess unique characteristics that can broaden our understanding of general dispersal ecology. We highlight emerging frontiers in fungal dispersal research that integrate technological advances with trait-based ecology, movement ecology, social–ecological systems, and work in unexplored environments. Outstanding research questions across these themes are presented to stimulate theoretical and empirical research in fungal dispersal ecology. Advances in fungal dispersal will improve our understanding of fungal community assembly and biogeography across a range of spatial scales, with implications for ecosystem functioning, global food security, and human health.more » « less
-
Markel, Scott (Ed.)When running a lab we do not think about calamities, since they are rare events for which we cannot plan while we are busy with the day-to-day management and intellectual challenges of a research lab. No lab team can be prepared for something like a pandemic such as COVID-19, which has led to shuttered labs around the globe. But many other types of crises can also arise that labs may have to weather during their lifetime. What can researchers do to make a lab more resilient in the face of such exterior forces? What systems or behaviors could we adjust in ‘normal’ times that promote lab success, and increase the chances that the lab will stay on its trajectory? We offer 10 rules, based on our current experiences as a lab group adapting to crisis.more » « less
-
null (Ed.)Biological soil crusts (biocrusts) are a complex community of algae, cyanobacteria, lichens, bryophytes, and assorted bacteria, fungi, archaea, and bacteriophages that colonize the soil surface. Biocrusts are particularly common in drylands and are found in arid and semiarid ecosystems worldwide. While diminutive in size, biocrusts often cover large terrestrial areas, provide numerous ecosystem benefits, enhance biodiversity, and are found in multiple configurations and assemblages across different climate and disturbance regimes. Biocrusts have been a focus of many ecologists, especially those working in semiarid and arid lands, as biocrusts are foundational community members, play fundamental roles in ecosystem processes, and offer rare opportunities to study biological interactions at small and large spatial scales. Due to these same characteristics, biocrusts have the potential to serve as an excellent teaching tool. The purpose of this paper is to demonstrate the utility of biocrust communities as a model system in science education. Functioning as portable, dynamic mini ecosystems, biocrusts can be used to teach about organisms, biodiversity, biotic interactions, abiotic controls, ecosystem processes, and even global change, and can be easy to use in nearly every classroom setup. For example, education principles, such as evolution and adaptation to stress, or structure and function (patterns and processes) can be applied by bringing biocrusts into the classroom as a teaching tool. In addition, discussing the utility of biocrusts in the classroom – including theory, hypothesis testing, experimentation, and hands-on learning – this document also provides tips and resources for developing education tools and activities geared toward impactful learning.more » « less
-
Free, publicly-accessible full text available February 28, 2026
An official website of the United States government

Full Text Available